
Citation: Wu, G.; Ji, X.; Yang, G.; Jia,

Y.; Cao, C. Signal-to-Image: Rolling

Bearing Fault Diagnosis Using

ResNet Family Deep-Learning

Models. Processes 2023, 11, 1527.

https://doi.org/10.3390/pr11051527

Academic Editor: Chunhui Zhao

Received: 8 April 2023

Revised: 5 May 2023

Accepted: 12 May 2023

Published: 17 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Signal-to-Image: Rolling Bearing Fault Diagnosis Using ResNet
Family Deep-Learning Models
Guoguo Wu 1,2, Xuerong Ji 3, Guolai Yang 1,*, Ye Jia 4 and Chuanchuan Cao 2

1 College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Intelligent Manufacturing Engineering, Chongqing University of Arts and Sciences,

Chongqing 402160, China
3 School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
4 Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China
* Correspondence: yanggl@lut.cn

Abstract: Rolling element bearings (REBs) are the most frequent cause of machine breakdowns.
Traditional methods for fault diagnosis in rolling bearings rely on feature extraction and signal
processing techniques. However, these methods can be affected by the complexity of the underlying
patterns and the need for expert knowledge during signal analysis. This paper proposes a novel signal-
to-image method in which the raw signal data are transformed into 2D images using continuous
wavelet transform (CWT). This transformation enhances the features extracted from the raw data,
allowing for further analysis and interpretation. Transformed images of both normal and faulty
rolling bearings from the Case Western Reserve University (CWRU) dataset were used with deep-
learning models from the ResNet family. They can automatically learn and identify patterns in raw
vibration signals after continuous wavelet transform is used, eliminating the need for manual feature
extraction. To further improve the training results, squeeze-and-excitation networks (SENets) were
added to improve the process. By comparing results obtained from several models, we found that
SE-ResNet152 has the best performance for REB fault diagnosis.

Keywords: rolling bearing; fault diagnosis; deep learning; continuous wavelet transform

1. Introduction

In the modern machine-manufacturing industry, rotation machinery accounts for more
than 90% of the market [1]. Of all rotation machines, rolling element bearings (REBs) are
one of the most circuital components for providing rotation motion [2]. However, because
of complex and changing working conditions, including changes in speed and workload,
REBs are also the most frequent cause of machine breakdowns [3]. Therefore, monitoring,
detecting, and diagnosing REB fault signals is necessary for rotating machinery systems [4].
A rolling bearing fault diagnosis is mainly focused on signal and intelligent diagnoses [5],
techniques that use vibration analysis to detect incipient faults in REBs [6].

The signal analysis research domain includes Fourier transform [7], wavelet packet
transform [8], dual-tree complex wavelet transform [9], Parsimonious Network based
on fuzzy Inference System (PANFIS) [10] and the acoustic signal-based approach [11].
Variation mode decomposition was proposed by [3] Yonggang Xu et al. [12], and the
adaptive kurtogram (AK) method detects fault signals in damaged machines. AK can
also be applied to a wheelset-bearing system fault diagnosis [13]. In addition, many
other algorithms, such as Fast Entrogram [14] and adaptive periodic mode decomposition
(APMD) [15] are also used to diagnose rolling bearing faults.

The intelligent diagnosis domain has become a popular research topic in recent years.
As increasingly intelligent techniques develop, they are more widely used in related fields.
For example, machine learning (ML) can be adapted from the computer vision field to
diagnose faults because of its ability to extract features and classify fault types [16,17].

Processes 2023, 11, 1527. https://doi.org/10.3390/pr11051527 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11051527
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11051527
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11051527?type=check_update&version=1

Processes 2023, 11, 1527 2 of 17

In [18], linear and nonlinear maps are discussed in detail, illustrating the optimal per-
formance of unsupervised and supervised learning for fault detection. Rolling-bearing fault
signal systems can be considered as nonlinear dynamic. Support vector machines (SVMs)
can also be adapted for fault classifications [19–21] and are a kind of supervised method.

Some of these methods can classify and detect faults in rotation machine systems, but
they cannot detect fault features directly from original signals but must calculate a massive
amount of data in real time, which means it is difficult to meet engineering requirements
that involve increasing data sizes. There is much value in investigating fault diagnosis
methods that can detect fault features from original signals, perform real-time calculations
automatically, and provide health-status feedback.

In recent years, with the development of deep learning (DL), an increasing num-
ber of researchers have become interested in using DL methods [16,22] to address the
aforementioned problems, and many have been applied to rolling-bearing fault diagnosis.
Convolutional neural networks (CNNs) are classic DL network structures and are useful
for image classification [23,24]. In addition, the TICNN model [25], the feature learning
model [26], the generative adversarial network (GAN) framework [27], and many other
DL models [28–36] have been widely applied to rolling bearing fault detection tasks. How-
ever, in DL models with deeper layers, the problem of vanishing gradients emerges; that
is, DL models have to sacrifice performance when they are trained with deeper layers.
To address these issues, Residual Network (ResNet) was proposed [37]. It uses residual
connections that allow it to learn the residual functions of the input instead of learning
complicated mappings from the input to the output. ResNet can successfully increase the
performance of deep neural networks; hence, a series of ResNet-based models have been
brought forward [38–40].

Applying ResNet to a rolling bearing fault diagnosis has major potential. However, the
ResNet family now has a lot of members. Which one is the best fit for a rolling bearing fault
diagnosis? The main goal of this paper is to find the most appropriate ResNet model for REB
fault diagnosis tasks. To improve the performance of these models, squeeze-and-excitation
networks (SENets) were used. Furthermore, this paper proposes a signal-to-image method
that adapts the REB fault detection issue into a classical image classification issue within
the DL field to allow the DL model to solve the REB fault detection problem more easily.
Therefore, this study contributes in the following ways:

• It proposes a novel signal-to-image method using continuous wavelet transform
(CWT); and

• It tests the classic ResNet family and the follow-up SE-ResNet family to find the best
ResNet model for REB fault diagnosis.

2. Materials and Methods
2.1. Rolling Bearing Fault Signal Transformation

The raw rolling-bearing fault data in this article were generated from the testing
facilities of the Bearing Data Center at Case Western Reserve University (CWRU). The
CWRU dataset is accessible online. The experimental platform includes a 2 HP motor, a
torque sensor, power meter, and electronic control equipment. The bearing being tested
supports the motor shaft. Single points of failure with diameters of 0.007, 0.014, 0.021 and
0.028 mils and 0.040 inches (1 cm = 0.001 in) were deployed on the bearings using electrical
discharge machine (EDM) technology. The original data include drive-end bearing fault
data, fan-end bearing fault data, and normal baseline data. The rpms during testing used
12 and 48 K sample frequencies. We used the drive-end bearing fault data as the original
raw data.

The broken rolling bearing data from CWRU contains the drive vibration data’s accel-
eration rate, which is part of the time-domain data. We selected CWT to enhance the raw
data’s features because the wavelet domain expands the dimensionality of the functional
signal, which can significantly extrude the data features. Compared with Fourier transform,
wavelet domain representation influences both the time and scale (or frequency) axes,

Processes 2023, 11, 1527 3 of 17

which means the wavelet transform offers substantial advantages in analyzing nonlinear
data. This can provide better results as it correlates the mother wavelet with Raman spectra
patterns for various scales and wave number positions. Thus, CWT can provide trans-
formed images with more original features, which can improve the accuracy of the DP
model [41].

The following integral expresses the CWT of a continuous function, x (t), at a scale,
a ∈ R, and a transnational value, b ∈ R:

Xw(a, b) =
1
|a|

∫ ∞

−∞
xtψ

(
t− b

a

)
dt (1)

The raw data contained three kinds of abnormal REBs and one normal REB, which
worked under four working loads. The fault locations of the three abnormal REBs were on
the ball, the inner raceway (IR) and the outer raceway (OR). We separated the four working
load conditions into four kinds of training datasets and one mixed-load-condition dataset.

When transforming signal data, selecting the right wavelet basis function has a major
impact on the final result. This paper compares five that are commonly used (discussed in
detail in Section 3.1).

The gauss wavelet (gauss) has important applications in signal and image edge extrac-
tion, and it is primarily used to extract stepped boundaries. It can capture both the high-
frequency and low-frequency components of a signal because of its strong time–frequency
localization capabilities. The wavelet function is defined as follows with t as the time
variable in all the following formulas in Section 2.1:

Ψgauss(t) =
1√
πσ

e−t2/(2σ2) (2)

where σ is a constant that controls the width of the Gaussian function.
The complex Gaussian wavelet (cgau) is a type of wavelet often used in signal process-

ing and analysis. It is ideal for analyzing signals with complicated time–frequency content
as it possesses many beneficial properties, including strong localization in both the time
and frequency domains. The wavelet function is defined as follows:

Ψcgau(t) =
1√
π

e−(
t2
2 +iω0t) (3)

where ω0 is a constant that controls the frequency of the wavelet.
The mexh wavelet (mexh), short for “Mexican hat wavelet”, is named for its shape,

and it is used to detect edge locations. The wavelet function is defined as follows:

Ψmexh(t) =
2√

3π1/4σ1/2
(1− t2

σ2)e
−t2/(2σ2) (4)

where σ is a constant that controls the width of the wavelet.
The Shannon wavelet (shan), also known as the “boxcar wavelet”, is characterized by

a square waveform that reaches infinity in the frequency domain and has a width of two
in the time domain. It has exceptional frequency resolution, which enables it to capture
high-frequency signal components. The wavelet function is defined as follows:

Ψshan(t) =

{
1√
N

i f |t| ≤ N
2

otherwise
(5)

where N is a constant that controls the duration of the wavelet.

Processes 2023, 11, 1527 4 of 17

The fbsp wavelet (fbsp), short for “finite-bounded symmetric pulse wavelet”, is de-
signed to have a finite duration and a symmetrical shape. The wavelet function is defined
as follows:

Ψ f bsp(t) =

{
1√
2N

i f |t| ≤ N
2

otherwise
(6)

where N is a constant that controls the duration of the wavelet.
cgau and gaus are derived from a Gaussian function. cgau, gauss, mexh, and shan are

“compactly supported” wavelets, which indicates that they are computationally effective to
work with because they have finite support in both the temporal and frequency domains.
gaus, fbsp, mexh, and shan are real-value wavelets, which are often used in signal processing
and analysis applications where time-domain analysis is important.

2.2. Introduce ResNet
2.2.1. ResNet Basics

Deep convolution neural networks are widely used in the image classification field
and have shown significant progress [42]. DL networks fall under multiple classifications
and feature in holistic networks, and their feature levels can be enriched by the depth of
their network layers. As Simonyan et al. [43] noted, it is important for a DL network to have
more stacked layers (depth); as such, the leading results on ImageNet all use very deep
models. Inspired by the benefits of applying very deep DL models, many scholars have
started to use deeper networks to achieve better performance in their models. However, the
problem of vanishing and exploding gradients has become an obstacle in using very deep
DL models [44]. Although these problems can be addressed by using normalized initializa-
tion [45,46] when deeper networks converge, a problem called degradation emerges. This
phenomenon is defined as follows: as network depth increases, the accuracy of the results
becomes saturated with common sense; however, it then degrades rapidly after reaching a
certain number of layers. To address this problem, a deep residual learning framework was
proposed by He K. et al. [37].

In ResNets, two basic blocks are included: the identity block and the convolution block.
The structures are shown as Figure 1. As Table 1 shows, ResNets have different names
depending on the numbers of layers. From ResNet18, which has 18 layers, to ResNet152,
which has 152 layers. ResNet’s basic family has 5 members. All ResNet models have four
stages, and each stage contains many residual and convolution blocks.

All members contain five convolution blocks (Conv1–5x, as shown in Table 1), and
each one contains one or more basic convolution calculation processes: the Conv layer, the
BN (Batch Normalization) layer, and the ReLU layer. The first convolution block contains
only one convolution computation. The first convolution block of the 5 classic models is
exactly the same as the others, with a convolution kernel of 7 × 7 and a step size of 2. They
all have all-connection layers at the end. Convolution blocks 2–5 all contain multiple
residual units that are the same. In many code implementations, convolution blocks 2–5 are
called Stage 1, Stage 2, Stage 3, and Stage 4. To facilitate storage and calculation, each
convolution block contains one downsampling operation to reduce the image size. During
implementation, the maximum pool, which has a step size of 2, is adopted in Stage 1
(Conv2x). For the other 4 convolution blocks, a convolution operation with a step size of 2
is used. Taking ResNet34 as an example, we can see the basic ResNet model structure in
Figure 2.

ResNet18 is a simplified version of ResNet34. The 18 in ResNet18 refers to a total of
18 layers with different weights, including convolutional layers and fully connected layers
but not batch normalization or pooling layers. In addition, the difference between ResNet34
and ResNet18 lies in the different number of residual units in each stage. There are two in
the four stages of ResNet18, so the total number of layers is =(2 + 2 + 2 + 2) × 2 + 1 + 1 = 18.

In ResNet50, the residuals units of ResNet18 and 34 contain two 3 × 3 convolutional
layers, whereas ResNet50 itself contains three convolutional layers of 1 × 1, 3 × 3, and
1 × 1, in that order. The channels in ResNet50 double in the output part of the first residual

Processes 2023, 11, 1527 5 of 17

unit at each stage, and the number of channels inside each residual unit also changes
(decreasing or increasing depending on the 1 × 1 convolution layer being adjusted), which
reduces the number of parameters in the deep network. Similarly, a difference between
ResNet101 and ResNet152 is the number of residual units at each stage, which is shown in
detail in Table 1.

Processes 2023, 11, x FOR PEER REVIEW 5 of 19

Figure 1. Two main ResNet blocks.

All members contain five convolution blocks (Conv1–5x, as shown in Table 1), and
each one contains one or more basic convolution calculation processes: the Conv layer, the
BN (Batch Normalization) layer, and the ReLU layer. The first convolution block contains
only one convolution computation. The first convolution block of the 5 classic models is
exactly the same as the others, with a convolution kernel of 7 × 7 and a step size of 2. They
all have all-connection layers at the end. Convolution blocks 2–5 all contain multiple re-
sidual units that are the same. In many code implementations, convolution blocks 2–5 are
called Stage 1, Stage 2, Stage 3, and Stage 4. To facilitate storage and calculation, each
convolution block contains one downsampling operation to reduce the image size. During
implementation, the maximum pool, which has a step size of 2, is adopted in Stage 1
(Conv2x). For the other 4 convolution blocks, a convolution operation with a step size of
2 is used. Taking ResNet34 as an example, we can see the basic ResNet model structure in
Figure 2.

Figure 1. Two main ResNet blocks.

Table 1. ResNet family.

Layer Name Output Size 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer

conv1 112 × 112 7 × 7, 64, stride 2

conv2x 56 × 56

3 × 3 max pool, stride 2[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

conv3x 28 × 28

[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 8

conv4x 14 × 14

[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256

1× 1, 1024

× 23

 1× 1, 256
3× 3, 256

1× 1, 1024

× 36

conv5x 7 × 7

[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1 × 1 Average pool, 1000-d fc, softmax

FLOPs 1.8 × 109 3.6 × 109 3.8 × 109 7.6 × 109 11.3 × 109

Processes 2023, 11, 1527 6 of 17Processes 2023, 11, x FOR PEER REVIEW 6 of 19

Figure 2. The structure of ResNet34.

ResNet18 is a simplified version of ResNet34. The 18 in ResNet18 refers to a total of
18 layers with different weights, including convolutional layers and fully connected layers
but not batch normalization or pooling layers. In addition, the difference between Res-
Net34 and ResNet18 lies in the different number of residual units in each stage. There are
two in the four stages of ResNet18, so the total number of layers is =(2 + 2 + 2 + 2) × 2 + 1 +
1 = 18.

In ResNet50, the residuals units of ResNet18 and 34 contain two 3 × 3 convolutional
layers, whereas ResNet50 itself contains three convolutional layers of 1 × 1, 3 × 3, and 1 ×
1, in that order. The channels in ResNet50 double in the output part of the first residual
unit at each stage, and the number of channels inside each residual unit also changes (de-
creasing or increasing depending on the 1 × 1 convolution layer being adjusted), which
reduces the number of parameters in the deep network. Similarly, a difference between
ResNet101 and ResNet152 is the number of residual units at each stage, which is shown
in detail in Table 1.

Table 1. ResNet family.

Layer
Name

Output
Size 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer

conv1 112 × 112 7 × 7, 64, stride 2

conv2x 56 × 56
3 × 3 max pool, stride 2 ቂ3 × 3, 643 × 3, 64ቃ × 2 ቂ3 × 3, 643 × 3, 64ቃ × 3 ൥ 1 × 1, 643 × 3, 641 × 1, 256൩ × 3 ൥ 1 × 1, 643 × 3, 641 × 1, 256൩ × 3 ൥ 1 × 1, 643 × 3, 641 × 1, 256൩ × 3

conv3x 28 × 28 ቂ3 × 3, 1283 × 3, 128ቃ × 2 ቂ3 × 3, 1283 × 3, 128ቃ × 4 ൥1 × 1, 1283 × 3, 1281 × 1, 512൩ × 4 ൥1 × 1, 1283 × 3, 1281 × 1, 512൩ × 4 ൥1 × 1, 1283 × 3, 1281 × 1, 512൩ × 8

conv4x 14 × 14 ൤3 × 3, 2563 × 3, 256൨ × 2 ൤3 × 3, 2563 × 3, 256൨ × 6 ൥ 1 × 1, 2563 × 3, 2561 × 1, 1024൩ × 6 ൥ 1 × 1, 2563 × 3, 2561 × 1, 1024൩ × 23 ൥ 1 × 1, 2563 × 3, 2561 × 1, 1024൩ × 36

Figure 2. The structure of ResNet34.

2.2.2. Squeeze-and-Excitation Networks Basics

Finding the common feature representations of transformed time-domain signal im-
ages is a nontrivial task. As shown in 3.2, these images are iconic and abstract, with
various levels of deformation. In contrast, classic image classification methods deal with
realistic images that contain rich color, texture, and shape information [47]. After testing
the basic members of the ResNet family (the testing process will be discussed in more
detail in the next section), the results still needed improvement. Therefore, squeeze-and-
excitation blocks (SE blocks) were introduced to enhance the presentation performance of
these ResNets.

The traditional method is to transfer the weight of the network’s feature map equally
to the next layer. The core idea of SENets is to establish interdependence between modeling
channels. In addition, SENets do not introduce a new spatial dimension to fuse feature
channels; instead, they adopt a new “feature recalibration” strategy and adaptively correct
the intensity of feature responses between the channels through the network’s global loss
function. In other words, the importance of each feature channel can be automatically
obtained through learning, and then the useful features can be enhanced according to their
importance. Features that are not useful to the current task can be suppressed. In this way,
a feature channel can be adaptively calibrated.

An SENet is composed of a series of SE blocks, which can be divided into two steps:
squeeze and excitation. SENets use feature recalibration to complete the attention mecha-
nism on the channel level, also known as the SE channel attention mechanism.

Subsequently, the squeeze operation obtains the global compressed feature vector of
the current feature map by performing a global average pooling on the feature map layer. It
turns each two-dimensional feature channel into a real number, and the output dimension
matches the input feature channel number. The excitation operation obtains the weight of
each channel in the feature map through two fully connected layers and uses the weighted
feature map as the input of the next layer of the network. The parameter w (shown in
Figure 3) is used to generate the weight of each feature channel; w is defined to explicitly

Processes 2023, 11, 1527 7 of 17

represent the correlation between the feature channels. During recalibration, the excitation
output weights are multiplied element-wise by the previous features.

Processes 2023, 11, x FOR PEER REVIEW 7 of 19

conv5x 7 × 7 ൤3 × 3, 5123 × 3, 512൨ × 2 ൤3 × 3, 5123 × 3, 512൨ × 3 ൥ 1 × 1, 5123 × 3, 5121 × 1, 2048൩ × 3 ൥ 1 × 1, 5123 × 3, 5121 × 1, 2048൩ × 3 ൥ 1 × 1, 5123 × 3, 5121 × 1, 2048൩ × 3

 1 × 1 Average pool, 1000-d fc, softmax
FLOPs 1.8 × 109 3.6 × 109 3.8 × 109 7.6 × 109 11.3 × 109

2.2.2. Squeeze-and-Excitation Networks Basics
Finding the common feature representations of transformed time-domain signal im-

ages is a nontrivial task. As shown in 3.2, these images are iconic and abstract, with various
levels of deformation. In contrast, classic image classification methods deal with realistic
images that contain rich color, texture, and shape information [47]. After testing the basic
members of the ResNet family (the testing process will be discussed in more detail in the
next section), the results still needed improvement. Therefore, squeeze-and-excitation
blocks (SE blocks) were introduced to enhance the presentation performance of these Res-
Nets.

The traditional method is to transfer the weight of the network’s feature map equally
to the next layer. The core idea of SENets is to establish interdependence between model-
ing channels. In addition, SENets do not introduce a new spatial dimension to fuse feature
channels; instead, they adopt a new “feature recalibration” strategy and adaptively cor-
rect the intensity of feature responses between the channels through the network’s global
loss function. In other words, the importance of each feature channel can be automatically
obtained through learning, and then the useful features can be enhanced according to
their importance. Features that are not useful to the current task can be suppressed. In this
way, a feature channel can be adaptively calibrated.

An SENet is composed of a series of SE blocks, which can be divided into two steps:
squeeze and excitation. SENets use feature recalibration to complete the attention mecha-
nism on the channel level, also known as the SE channel attention mechanism.

Subsequently, the squeeze operation obtains the global compressed feature vector of
the current feature map by performing a global average pooling on the feature map layer.
It turns each two-dimensional feature channel into a real number, and the output dimen-
sion matches the input feature channel number. The excitation operation obtains the
weight of each channel in the feature map through two fully connected layers and uses
the weighted feature map as the input of the next layer of the network. The parameter w
(shown in Figure 3) is used to generate the weight of each feature channel; w is defined to
explicitly represent the correlation between the feature channels. During recalibration, the
excitation output weights are multiplied element-wise by the previous features.

Figure 3. A squeeze-and-excitation block.

As can be seen above, an SE block only relies on one set of current feature maps, so
it can be easily embedded into almost all current convolutional networks. The squeeze
operation compresses information while at the same time reducing the overhead of the
affiliated connections. One of its classic pairings is with ResNet, and this is why SENets
were introduced to improve the ResNets in this paper.

Figure 3. A squeeze-and-excitation block.

As can be seen above, an SE block only relies on one set of current feature maps, so
it can be easily embedded into almost all current convolutional networks. The squeeze
operation compresses information while at the same time reducing the overhead of the
affiliated connections. One of its classic pairings is with ResNet, and this is why SENets
were introduced to improve the ResNets in this paper.

The basic structure of the SE block in Figure 3 applies to any given transformation
shown in Equation (2).

Ftr : X −→ U, X ∈ RW ′×H′×C′ , U ∈ RW×H×C (7)

We can construct a corresponding SE block to perform feature recalibration. Feature
map U is first produced by the squeeze operation, which aggregates feature maps across
the spatial dimension, W × H, to produce channel descriptors. This descriptor embeds the
global distribution of the channel’s characteristic responses so that information from the
global receptive field of the network can be used by its lower layers. After that, an excitation
operation is performed, in which the excitation of each channel is controlled by determining
a specific sampled activation for each channel through a self-gating mechanism based on
channel dependence. Feature map U is then reweighted to generate the output of the SE
block, which can then be input directly into subsequent layers.

2.2.3. SENet in ResNet

As mentioned above, SE blocks were introduced as a type of attention mechanism.
They allow deep neural networks to focus selectively on the most important features and
suppress the less important ones. This attention mechanism is particularly useful in image
classification tasks, where the model needs to identify the most relevant features in an
image to make accurate predictions. An SE block achieves this by using global average
pooling to summarize the feature maps along the spatial dimensions into a single vector,
which is then passed through two fully connected layers. The output of the second layer is
a set of weights that are used to reweight the feature maps in the residual block, enabling
the network to emphasize the most important features selectively and suppress the less
important ones.

To incorporate an SE block into existing deep-learning models, Jie Hu proposed com-
bining SE blocks with ResNet models, resulting in a new type of ResNet family called SE-
ResNet [38], which includes various members, such as SE-ResNet50 and SE-ResNet101, which
have demonstrated state-of-the-art performance on benchmark datasets such as ImageNet.

In SE-ResNets, an SE module is inserted after the activation function in each residual
block. This placement ensures that the SE module can access the feature maps before they
pass to the next residual block, allowing the SE block to focus selectively on the most
important features at an early stage of the network. The combination of SE block and

Processes 2023, 11, 1527 8 of 17

ResNet models has been shown to improve the performance of ResNet models in various
image classification tasks significantly, particularly when dealing with iconic and abstract
images. SE blocks allow ResNet models to focus selectively on the most important features
of an image, enabling the network to learn more discriminative representations of the data.
This, in turn, improves the accuracy of the model’s predictions, especially for images that
are difficult to classify.

SE-ResNet models have been extensively evaluated using various benchmark datasets,
such as ImageNet and CIFAR-10, and have consistently achieved state-of-the-art perfor-
mance. For example, SE-ResNet152 achieved a top-1 accuracy of 82.63% on the ImageNet
dataset, which is a significant improvement over the top-1 accuracy of 76.34% achieved
by the basic ResNet152 model [38]. Similarly, on the CIFAR-10 dataset, SE-ResNet models
achieved a higher accuracy compared with basic ResNet models: SE-ResNet152 achieved a
test accuracy of 96.54% compared with the 94.54% for ResNet152 [38].

2.3. Experimental Procedure

The experiments were conducted on a desktop computer equipped with a 13th-
generation i7 chip, 32 GB RAM, and an NVIDIA 3060 ti GPU. The simulation environment
was implemented using the PyTorch deep-learning framework (PyTorch version 1.7.1).
Python scripts were used to read the original data from CWRU, randomly select training
datasets, and transform the time-domain signals into frequency-domain signals using CWT.
The programs were compiled and run using Python version 3.9, PyCharm, and Terminal.

The unprocessed data obtained from CWRU served as the basis for the original signal
data. The one-dimensional signal was converted into two-dimensional color images by
applying the CWT method. The REB fault image data were partitioned into five distinct
training datasets called Load 0, Load 1, Load 2, Load 3, and Mix Load, representing various
working load conditions. A comprehensive description of this process can be found in
Section 3.1.

The study aimed to determine the DL model that achieved the best performance in
detecting REB faults through a comparative experiment, which was conducted in 5 (train-
ing datasets) × 10 (DL Model) sub-experiments. The DL models included ResNet18,
ResNet34, ResNet50, ResNet101, and ResNet152, as well as their follow-up versions
with squeezed–excitation blocks, namely, SE-ResNet18, SE-ResNet34, SE-ResNet50, SE-
ResNet101, and SE-ResNet152. The additional five SE-ResNet models were incorporated
because the output parameters did not meet our expectations. The use of SENet blocks was
a convenient way to augment the original models without significant architectural changes.

We analyzed all the results and compared the parameters for accuracy, precision, recall
and F1 score (described in detail in Section 2.4) with each other using ResNet family models,
with or without SE blocks. We concluded that SE-ResNet50 is a powerful model suited to
REB detection in many conditions. A detailed analysis is in Section 4.1.

We also concluded that SE-ResNet152 is another powerful model suited to REB detec-
tion in many conditions. The detailed analysis is in Section 4.

2.4. Model Performance Metrics

Model performance metrics reflect a model’s performance. Four main performance
indexes were included, P (precision), R (recall), accuracy, and F1 (F1 score), as shown in the
following formula: 

Precision =
Tp

Tp + Fp

Recall = Tp
Tp + FN

Acuracy = TH
Tp + Fp + TN + FN

F1 =
2 × precision × recall

precision + recall

(8)

where Tp represents the number of rolling bearing faults correctly detected; Fp is the
number of fault signal types incorrectly detected as another type of fault; FN represents a

Processes 2023, 11, 1527 9 of 17

specific fault type that was not detected; TN represents the number of wrong detections;
TM represents the number of samples correctly labeled in the top 5 probabilities of the
model’s output; T M represents the number of samples correctly labeled in the maximum
probability of model’s output; and the sum of Tp, FN, Fp, and TN represents the total number
of samples.

3. Results of the Experiment
3.1. Signal-to-Image Results

As previously mentioned, the experimental data were collected from CWRU and are
publicly available. Using these data, we tested five wavelet basis functions to learn which
was the best method. To compare their effectiveness, we processed the transformed 2D
images. First, we converted images to grayscale if they were in color. Then, we calculated
the probability distribution of its pixel values, which is the p in Formula (9). After that, we
calculated the entropy (H) using the following formula:

H = −
N

∑
i=1

pilog2(pi) (9)

This formula calculates the entropy of the image in bits per pixel. The entropy is a
measure of the average amount of information per pixel in the image. It can be used to
make inferences about the image. Those with high entropy values contain more information
and variation in pixel value and are more complex than images with low entropy values.
The final results of the functions are as follows (Figure 4):

Processes 2023, 11, x FOR PEER REVIEW 10 of 19

the probability distribution of its pixel values, which is the p in Formula (9). After that, we
calculated the entropy (H) using the following formula:

𝐻 = − ෍ 𝑝௜ே
௜ୀଵ 𝑙𝑜𝑔ଶ(𝑝௜) (9)

This formula calculates the entropy of the image in bits per pixel. The entropy is a
measure of the average amount of information per pixel in the image. It can be used to
make inferences about the image. Those with high entropy values contain more infor-
mation and variation in pixel value and are more complex than images with low entropy
values. The final results of the functions are as follows (Figure 4):

Figure 4. Comparison of CWT method entropy values.

As shown, gaus1() had the largest entropy value, which meant that the images pro-
cessed by it had better detail. Thus, it was the method we ultimately chose.

The final signal-to-image procedure is depicted in Figure 5. First, a Python script was
used to read each raw data file. Next, the raw data were segmented into arrays containing
1024 sample points each, which were then converted into signal images. Eventually, the
signal data were transformed into 2D images, enhancing the features extracted from the
raw data.

4.4
4.45

4.5
4.55

4.6
4.65

4.7
4.75

Entropy of the Methods' Result Images

Figure 4. Comparison of CWT method entropy values.

As shown, gaus1() had the largest entropy value, which meant that the images pro-
cessed by it had better detail. Thus, it was the method we ultimately chose.

The final signal-to-image procedure is depicted in Figure 5. First, a Python script was
used to read each raw data file. Next, the raw data were segmented into arrays containing
1024 sample points each, which were then converted into signal images. Eventually, the
signal data were transformed into 2D images, enhancing the features extracted from the
raw data.

Processes 2023, 11, 1527 10 of 17Processes 2023, 11, x FOR PEER REVIEW 11 of 19

Figure 5. The signal-to-image process.

The raw data comprised four distinct working load conditions, and each contained
four REB fault conditions; thus, each load condition was separated into different training
datasets. As illustrated in Table 2, five were generated: Load 0, Load 1, Load 2, Load 3,
and Mix Load. Apart from the Mix Load dataset, the other four were derived directly from
the raw data. The Mix Load dataset was randomly generated using samples from the other
four.

In the Load 0 training dataset, there were 354 images of the inner race (IR) broken
condition, 263 images of the outer race (OR) broken condition, 355 images of the ball bro-
ken condition, and 179 images of the normal working condition. In the Load 1 training
dataset, there were 259 images of the IR broken condition, 264 images of the OR broken
condition, 267 images of the ball broken condition, and 179 images of the normal working
condition. In the Load 2 training dataset, there were 355 images of the IR broken condition,
267 images of the OR broken condition, 267 images of the ball broken condition, and 179
images of the normal working condition. In the Load 3 training dataset, there were 356
images of the IR broken condition, 268 images of the OR broken condition, 267 images of
the ball broken condition, and 179 images of the normal working condition. In the Mix
Load training dataset, there were 412 images of the IR broken condition, 243 images of the
OR broken condition, 327 images of the ball broken condition, and 236 images of the nor-
mal working condition.

The performance of the ResNet and SE-ResNet families under each training dataset
will be further discussed in the following sections.

Figure 5. The signal-to-image process.

The raw data comprised four distinct working load conditions, and each contained
four REB fault conditions; thus, each load condition was separated into different training
datasets. As illustrated in Table 2, five were generated: Load 0, Load 1, Load 2, Load 3,
and Mix Load. Apart from the Mix Load dataset, the other four were derived directly
from the raw data. The Mix Load dataset was randomly generated using samples from the
other four.

Table 2. Training datasets.

Load 0 Load 1 Load 2 Load 3 Mix

IR 354 259 355 356 412
OR 263 264 267 268 243
Ball 355 267 267 267 327

Normal 179 179 179 179 236

In the Load 0 training dataset, there were 354 images of the inner race (IR) broken
condition, 263 images of the outer race (OR) broken condition, 355 images of the ball broken
condition, and 179 images of the normal working condition. In the Load 1 training dataset,
there were 259 images of the IR broken condition, 264 images of the OR broken condition,
267 images of the ball broken condition, and 179 images of the normal working condition.
In the Load 2 training dataset, there were 355 images of the IR broken condition, 267 images
of the OR broken condition, 267 images of the ball broken condition, and 179 images of

Processes 2023, 11, 1527 11 of 17

the normal working condition. In the Load 3 training dataset, there were 356 images of
the IR broken condition, 268 images of the OR broken condition, 267 images of the ball
broken condition, and 179 images of the normal working condition. In the Mix Load
training dataset, there were 412 images of the IR broken condition, 243 images of the OR
broken condition, 327 images of the ball broken condition, and 236 images of the normal
working condition.

The performance of the ResNet and SE-ResNet families under each training dataset
will be further discussed in the following sections.

3.2. The Results of the Fault Diagnosis

In this section, we use the signal-to-image results to verify the DL models mentioned
in Section 2.3. We trained each DL model with 500 epochs using five different training
datasets, as detailed in Table 2. To evaluate the performance of the DL models, we focus on
four key metrics: accuracy, precision, recall, and F1 score. The remainder of this section is
divided into two subsections presenting the training results for the ResNet family and the
follow-up SE-ResNet family.

3.2.1. Results of ResNet Family Fault Diagnosis

As shown in Figure 6, the ResNet family DL models were evaluated using five train-
ing datasets.

For the Load 0 dataset, between the five models, ResNet50 achieved the highest
accuracy at around 90%, the highest precision at over 90%, the highest recall at around
85%, and the highest F1 score at around 90%. The other four ResNet models, excluding
ResNet101, achieved an almost identical performance. Specifically, their accuracy was
around 80%, precision was around 70%, recall was around 70% and the F1 score was
around 65%. In contrast, ResNet101 performed the worst of the ResNet models when
trained on the Load 0 dataset.

For the Load 1 dataset, in contrast to the Load 0 dataset, the performance of ResNet50
and the other ResNet models was much closer. The accuracy of all models was almost the
same: around 70%. Regarding precision, ResNet50 achieved the highest score at around
50%, while the other four models achieved around 40%. Similarly, ResNet50 also achieved
a recall and F1 score of around 50%, and the other four models achieved a recall and F1
score of around 40%.

For the Load 2 dataset, ResNet152 achieved the highest accuracy score at around
85%, followed by ResNet34 at around 80%, ResNet18 at around 75%, ResNet50 at around
70%, and ResNet101 at around 65%. Regarding precision, ResNet50 achieved the highest
precision score at around 70%, followed by ResNet152 at around 68%. ResNet34, ResNet18,
and ResNet101 achieved precision scores of around 63, 58, and 50%, respectively. Similarly,
the recall score for ResNet50 was the highest at around 72%, followed by ResNet152 at
around 69%. ResNet34, ResNet18, and ResNet101 achieved recall scores of around 66%,
62%, and 52%, respectively. For F1 score, ResNet50 and ResNet152 achieved almost the
same score at around 70%, while ResNet34 and ResNet18 achieved almost the same score
at around 60%. ResNet101 achieved the lowest F1 score at around 50%.

For the Load 3 dataset, ResNet34 achieved the highest accuracy score at around 75%,
followed by ResNet152 at 78%, ResNet18 at around 77%, and ResNet101 slightly higher
than ResNet101 at 63%. Regarding precision, ResNet50 was significantly higher (55%) than
the other four models, which achieved precision scores of around 40% or less. Similarly, the
recall score for ResNet50 was the highest at around 45%, followed by ResNet34 at around
42%. The other three models achieved recall scores of under 40%.

Processes 2023, 11, 1527 12 of 17Processes 2023, 11, x FOR PEER REVIEW 13 of 19

Figure 6. Detecting fault data using ResNets.

For the Load 2 dataset, ResNet152 achieved the highest accuracy score at around 85%,
followed by ResNet34 at around 80%, ResNet18 at around 75%, ResNet50 at around 70%,
and ResNet101 at around 65%. Regarding precision, ResNet50 achieved the highest pre-
cision score at around 70%, followed by ResNet152 at around 68%. ResNet34, ResNet18,
and ResNet101 achieved precision scores of around 63, 58, and 50%, respectively. Simi-
larly, the recall score for ResNet50 was the highest at around 72%, followed by ResNet152
at around 69%. ResNet34, ResNet18, and ResNet101 achieved recall scores of around 66%,
62%, and 52%, respectively. For F1 score, ResNet50 and ResNet152 achieved almost the
same score at around 70%, while ResNet34 and ResNet18 achieved almost the same score
at around 60%. ResNet101 achieved the lowest F1 score at around 50%.

For the Load 3 dataset, ResNet34 achieved the highest accuracy score at around 75%,
followed by ResNet152 at 78%, ResNet18 at around 77%, and ResNet101 slightly higher
than ResNet101 at 63%. Regarding precision, ResNet50 was significantly higher (55%)
than the other four models, which achieved precision scores of around 40% or less. Simi-
larly, the recall score for ResNet50 was the highest at around 45%, followed by ResNet34
at around 42%. The other three models achieved recall scores of under 40%.

For the Mix Load dataset ResNet34 and ResNet152 achieved almost the same accu-
racy scores at around 75%, followed by ResNet101 at 70%, ResNet18 at 68%, and ResNet50
at 62%. These results suggest that ResNet34 and ResNet152 were the most accurate models
for the Mix Load data. Regarding precision, the performance of the models fell from Res-
Net152 to ResNet18, with precision scores ranging from 62 to 40%. Similarly, for recall
and F1 scores, ResNet152 achieved the highest scores at around 58%, while ResNet18
achieved the lowest scores at around 40%.

The summary of this section is as follows: (1) For the Load 0 dataset, ResNet50
achieved the highest accuracy, precision, recall, and F1 scores, while the other models

Figure 6. Detecting fault data using ResNets.

For the Mix Load dataset ResNet34 and ResNet152 achieved almost the same accuracy
scores at around 75%, followed by ResNet101 at 70%, ResNet18 at 68%, and ResNet50 at
62%. These results suggest that ResNet34 and ResNet152 were the most accurate models for
the Mix Load data. Regarding precision, the performance of the models fell from ResNet152
to ResNet18, with precision scores ranging from 62 to 40%. Similarly, for recall and F1
scores, ResNet152 achieved the highest scores at around 58%, while ResNet18 achieved the
lowest scores at around 40%.

The summary of this section is as follows: (1) For the Load 0 dataset, ResNet50
achieved the highest accuracy, precision, recall, and F1 scores, while the other models
achieved an almost identical performance. ResNet101 performed the worst among the
ResNet models. (2) For the Load 1 dataset, the performance of ResNet50 and the other
ResNet models was much closer, with all models achieving almost the same accuracy scores.
(3) For the Load 2 dataset, ResNet152 achieved the highest accuracy score, followed by
ResNet34, ResNet18, ResNet50, and ResNet101. ResNet50 achieved the highest precision
score, while ResNet50 and ResNet152 achieved the highest recall and F1 scores. (4) For the
Load 3 dataset, ResNet34 achieved the highest accuracy score, while ResNet50 achieved
significantly higher precision and recall scores than the other models. (5) For the Mix
Load dataset, ResNet34 and ResNet152 achieved almost the same accuracy scores, while
ResNet152 achieved the highest precision, recall, and F1 scores.

Processes 2023, 11, 1527 13 of 17

3.2.2. Results of the SE-ResNet Family Fault Diagnosis

As shown in Figure 7, the SE-ResNet family DL models were evaluated using five
training datasets.

Processes 2023, 11, x FOR PEER REVIEW 14 of 19

achieved an almost identical performance. ResNet101 performed the worst among the
ResNet models. (2) For the Load 1 dataset, the performance of ResNet50 and the other
ResNet models was much closer, with all models achieving almost the same accuracy
scores. (3) For the Load 2 dataset, ResNet152 achieved the highest accuracy score, followed
by ResNet34, ResNet18, ResNet50, and ResNet101. ResNet50 achieved the highest preci-
sion score, while ResNet50 and ResNet152 achieved the highest recall and F1 scores. (4)
For the Load 3 dataset, ResNet34 achieved the highest accuracy score, while ResNet50
achieved significantly higher precision and recall scores than the other models. (5) For the
Mix Load dataset, ResNet34 and ResNet152 achieved almost the same accuracy scores,
while ResNet152 achieved the highest precision, recall, and F1 scores.

3.2.2. Results of the SE-ResNet Family Fault Diagnosis
As shown in Figure 7, the SE-ResNet family DL models were evaluated using five

training datasets.

Figure 7. Detecting fault data using SE-ResNets.

For the Load 0 dataset, SE-ResNet152 achieved the highest performance score of the
four evaluation metrics at around 93%, followed by the other four models at around 90%.
Compared with the ResNet family, the SE-ResNet family showed significant improve-
ment in performance, particularly for SE-ResNet101, which achieved a performance score
increase of over 30% compared with ResNet101.

For the Load 1 dataset, SE-ResNet50 and SE-ResNet101 achieved the highest accuracy
scores at 70%; the other three models were at around 65%. Regarding precision, all models
had almost the same score at around 60%, apart from SE-ResNet101. As for the recall and
F1 scores, there is no obvious difference between the five models, which are all around
50%. SE-ResNet50 and SE-ResNet101 achieved the highest accuracy scores at 70%, while

Figure 7. Detecting fault data using SE-ResNets.

For the Load 0 dataset, SE-ResNet152 achieved the highest performance score of the
four evaluation metrics at around 93%, followed by the other four models at around 90%.
Compared with the ResNet family, the SE-ResNet family showed significant improve-
ment in performance, particularly for SE-ResNet101, which achieved a performance score
increase of over 30% compared with ResNet101.

For the Load 1 dataset, SE-ResNet50 and SE-ResNet101 achieved the highest accuracy
scores at 70%; the other three models were at around 65%. Regarding precision, all models
had almost the same score at around 60%, apart from SE-ResNet101. As for the recall and
F1 scores, there is no obvious difference between the five models, which are all around 50%.
SE-ResNet50 and SE-ResNet101 achieved the highest accuracy scores at 70%, while the
other three models achieved scores of around 65%. Regarding precision, all models, except
for SE-ResNet101, achieved almost the same scores of around 60%.

For the Load 2 dataset, SE-ResNet152 achieved the highest score for all four eval-
uation metrics, with a performance score of around 95%. SE-ResNet34, SE-ResNet50,
and SE-ResNet101 achieved the same performance scores of approximately 92%, while
SE-ResNet18’s performance was slightly lower than the other three models at around 90%.

For the Load 3 dataset, SE-ResNet152 achieved the highest accuracy score at 92%. SE-
ResNet50 and SE-ResNet101 followed closely behind with scores of 89% and approximately

Processes 2023, 11, 1527 14 of 17

87%, respectively. For precision, recall, and F1, SE-ResNet152 achieved the highest score,
with a performance of approximately 70%. The other four models scored below 70%,
demonstrating that SE-ResNet152 was the most effective model for the Load 3 dataset.

For the Mix Load dataset, SE-ResNet152 achieved the highest performance score of
all the models at around 96% for all four evaluation metrics. SE-ResNet152 achieved the
highest score of all the models, approximately 96% across all four evaluation metrics. While
the other models also performed well across all metrics, SE-ResNet50 demonstrated the
weakest performance in precision, recall, and F1, with scores of approximately 70%.

Overall, SE-ResNet152 consistently achieved the highest performance scores across
all datasets. The SE-ResNet family showed a significant improvement compared with
the ResNet family. SE-ResNet50 and SE-ResNet101 demonstrated strong performance for
certain datasets. SE-ResNet152 is the most effective model for accuracy, precision, recall,
and F1 score for the Load 3 and Mix Load datasets. SE-ResNet50 demonstrated the weakest
performance in precision, recall, and F1 score for the Mix Load dataset.

4. Discussion
4.1. ResNet Models

In this experiment, as mentioned in Section 2.4, we introduced four output
parameters—precision, recall, accuracy, and F1 score—to describe the experimental re-
sults because accuracy alone cannot accurately describe the correctness of the training
results. The larger the four kinds of data, the better this model performed. Based on the
ResNet model results, the model that was the best for each corresponding situation can be
seen in Figure 6.

For Load 0, ResNet50 had obvious advantages, and it was the highest of all four
metrics. In the follow-up models, ResNet152, ResNet34, ResNet18, and ResNet101 were the
most to least accurate, in that order. For Load 1, apart from ResNet50, the results are similar
but weaker than ResNet50, especially for precision, recall, and F1 score. For Load 2, the best
to worst performances were ResNet50, ResNet152, ResNet34, ResNet18, and ResNet101,
in that order. The parameters of ResNet152 and ResNet34 were close, but the parameters
of ResNet152 were slightly larger. For Load 3, even though the accuracy of ResNet34 was
higher than ResNet50, the performance of the other three was the opposite. Thus, generally
speaking, ResNet50 fit better for Load 3. For Loads 0–3, ResNet101 was always the weakest.
Last but not least, for the Mixed Load, the models had better correctness as the layers
increased, which meant ResNet152 was the best.

On the whole, ResNet50 was the best fit for all the conditions, as it suited most of
the datasets well, or even the best. However, in the vast majority of cases, the final result
was never more than 90%. We would like to improve this result, which is the reason we
introduced SENet to these models.

4.2. SE-ResNet Models

As can be seen in Figure 7, the improvement the SENets bring is significant; for every
5 × 5 output, the results are better compared with the ResNet models.

For Load 0 and Load 2, four values of all five models were over 90%. In the corre-
sponding bar chart, the results were similar to each other, and SE-ResNet152 still scored
slightly better than the other models in four aspects and two conditions. For Load 1, the
accuracy of SE-ResNet50 was close to that of SE-ResNet101 and a little bit higher than
that of SE-ResNet18. The other two were in the next tier with SE-ResNet152 being the
lowest. The recall and F1 scores shared the same trend, with SE-ResNet18, SE-ResNet50,
SE-ResNet101, SE-ResNet34, and SE-ResNet152 ranging from top to bottom, in that order.
Precision was 61% for SE-ResNet18, SE-ResNet50, and SE-ResNet152, followed by 60%
for SE-ResNet34 and 56% for SE-ResNet101. Generally, the training-effect rankings were
SE-ResNet50, SE-ResNet18, SE-ResNet34, SE-ResNet101, and SE-ResNet152, from best to
worst. For Load 3, the trend was the same for all four parameters, and the order was

Processes 2023, 11, 1527 15 of 17

SE-ResNet152, SE-ResNet50, SE-ResNet101, SE-ResNet34, and SE-ResNet18, from best
to worst.

Even though the performance of SE-ResNet152 was not ideal for Load 1, it was the
best for the other four loads. In sum, we concluded that SE-ResNet152 is the best model for
all conditions.

4.3. Performance Comparison of SE-ResNet152 with Three Other DL Models

The results in Section 3.2.2 were not as ideal as we desired. Thus, we performed
another test to compare the performance of SE-ResNet152 with other DL models. We
conducted an experiment that involved four models: SE-ResNet152, ShuffleNetV1, Shuf-
fleNetV2, and VGG19. The purpose was to evaluate the models’ ability to diagnose faults
in rolling bearings.

The results of the experiment showed that SE-ResNet152 achieved good performance
with an accuracy of 96.42%, a precision of 95.84%, a recall of 96.96%, and an F1 score of
96.31%. As per Figure 8, not only did SE-ResNet152 have accuracy in the first tier, but
it also had a significant advantage in the other three parameters. The results indicated
that SE-ResNet152 is a promising model for rolling bearing fault diagnosis. Put another
way, the other three models, ShuffleNetV1, ShuffleNetV2, and VGG19, achieved similar
accuracy scores, but their precision, recall, and F1 scores were much lower than those
of SE-ResNet152.

Processes 2023, 11, x FOR PEER REVIEW 16 of 19

slightly better than the other models in four aspects and two conditions. For Load 1, the
accuracy of SE-ResNet50 was close to that of SE-ResNet101 and a little bit higher than that
of SE-ResNet18. The other two were in the next tier with SE-ResNet152 being the lowest.
The recall and F1 scores shared the same trend, with SE-ResNet18, SE-ResNet50, SE-Res-
Net101, SE-ResNet34, and SE-ResNet152 ranging from top to bottom, in that order. Preci-
sion was 61% for SE-ResNet18, SE-ResNet50, and SE-ResNet152, followed by 60% for SE-
ResNet34 and 56% for SE-ResNet101. Generally, the training-effect rankings were SE-Res-
Net50, SE-ResNet18, SE-ResNet34, SE-ResNet101, and SE-ResNet152, from best to worst.
For Load 3, the trend was the same for all four parameters, and the order was SE-Res-
Net152, SE-ResNet50, SE-ResNet101, SE-ResNet34, and SE-ResNet18, from best to worst.

Even though the performance of SE-ResNet152 was not ideal for Load 1, it was the
best for the other four loads. In sum, we concluded that SE-ResNet152 is the best model
for all conditions.

4.3. Performance Comparison of SE-ResNet152 with Three Other DL Models
The results in Section 3.2.2 were not as ideal as we desired. Thus, we performed an-

other test to compare the performance of SE-ResNet152 with other DL models. We con-
ducted an experiment that involved four models: SE-ResNet152, ShuffleNetV1, Shuf-
fleNetV2, and VGG19. The purpose was to evaluate the models’ ability to diagnose faults
in rolling bearings.

The results of the experiment showed that SE-ResNet152 achieved good performance
with an accuracy of 96.42%, a precision of 95.84%, a recall of 96.96%, and an F1 score of
96.31%. As per Figure 8, not only did SE-ResNet152 have accuracy in the first tier, but it
also had a significant advantage in the other three parameters. The results indicated that
SE-ResNet152 is a promising model for rolling bearing fault diagnosis. Put another way,
the other three models, ShuffleNetV1, ShuffleNetV2, and VGG19, achieved similar accu-
racy scores, but their precision, recall, and F1 scores were much lower than those of SE-
ResNet152.

Overall, these findings suggest that SE-ResNet152 could be an effective tool for roll-
ing-bearing fault diagnosis, and further research could explore its potential uses in other
mechanical equipment fault diagnosis tasks.

Figure 8. The detection results of the four models.

5. Conclusions
This paper proposed a fault–signal conversion method for rolling bearings based on

a signal-to-image model. The signal-to-image process was achieved using continuous
wavelet transform; the signal was transformed from being one-dimensional to two-di-
mensional, and the two-dimensional images contained more signal features. The data can

0

20

40

60

80

100

120

Accuarcy Precision Recall F1 score

ShuffletV1 ShuffletV2 VGG_19 SE-ResNet152

Figure 8. The detection results of the four models.

Overall, these findings suggest that SE-ResNet152 could be an effective tool for rolling-
bearing fault diagnosis, and further research could explore its potential uses in other
mechanical equipment fault diagnosis tasks.

5. Conclusions

This paper proposed a fault–signal conversion method for rolling bearings based
on a signal-to-image model. The signal-to-image process was achieved using continu-
ous wavelet transform; the signal was transformed from being one-dimensional to two-
dimensional, and the two-dimensional images contained more signal features. The data can
be divided into five working load conditions, and based on this we trained 10 DL models
to find out which ResNet model was the best for REB fault detection.

Five loads were trained using the five classic ResNet family models. Four different
performance accuracy parameters were derived from the results. Through analysis and
comparison, we found that the training effect of ResNet50 was the best. However, an ideal
result was not achieved.

Processes 2023, 11, 1527 16 of 17

To improve the correctness of the training process, an SENet was introduced to im-
prove the model with as few changes to the original structure as possible. To test its
validity further, we compared SE-ResNet152 with the three other DL models, ShuffleNetV1,
ShuffleNetV2, and VGG19, and confirmed that SE-ResNet152 is an ideal REB fault detec-
tion model.

Author Contributions: Conceptualization, G.W., X.J. and G.Y.; methodology, G.W. and Y.J.; investiga-
tion, X.J., Y.J. and C.C.; resources, G.W., X.J. and Y.J.; writing—original draft preparation, X.J. and Y.J.;
writing—review and editing, G.W. and G.Y.; project administration, G.Y.; funding acquisition, G.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Science and Technology Research Program of the
Chongqing Municipal Education Commission (Grant No. KJQN202101308).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: We declare that we do not have any commercial or associative interest that
represent any conflict of interest in connection with the work submitted.

References
1. Zhang, X.; Zhou, J. Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and

optimized support vector machines. Mech. Syst. Signal Process. 2013, 41, 127–140. [CrossRef]
2. Randall, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [CrossRef]
3. Dibaj, A.; Ettefagh, M.M.; Hassannejad, R.; Ehghaghi, M.B. Fine-tuned variational mode decomposition for fault diagnosis of

rotary machinery. Struct. Health Monit. 2020, 19, 1453–1470. [CrossRef]
4. Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 2018,

107, 241–265. [CrossRef]
5. Muruganatham, B.; Sanjith, M.; Krishnakumar, B.; Murty, S.S. Roller element bearing fault diagnosis using singular spectrum

analysis. Mech. Syst. Signal Process. 2013, 35, 150–166. [CrossRef]
6. McFadden, P.; Smith, J. Vibration monitoring of rolling element bearings by the high-frequency resonance technique—A review.

Tribol. Int. 1984, 17, 3–10. [CrossRef]
7. Lu, C.; Wang, Z.; Zhou, B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health

state classification. Adv. Eng. Inform. 2017, 32, 139–151. [CrossRef]
8. Singh, M.; Shaik, A.G. Faulty bearing detection, classification and location in a three-phase induction motor based on Stockwell

transform and support vector machine. Measurement 2019, 131, 524–533. [CrossRef]
9. Gharesi, N.; Arefi, M.M.; Ebrahimi, Z.; Razavi-Far, R.; Saif, M.; Zarei, J. Analyzing the vibration signals for bearing defects

diagnosis using the combination of SGWT feature extraction and SVM. IFAC-Pap. 2018, 51, 221–227. [CrossRef]
10. Caesarendra, W.; Pratama, M.; Kosasih, B.; Tjahjowidodo, T.; Glowacz, A. Parsimonious network based on a fuzzy inference

system (PANFIS) for time series feature prediction of low speed slew bearing prognosis. Appl. Sci. 2018, 8, 2656. [CrossRef]
11. Glowacz, A. Fault detection of electric impact drills and coffee grinders using acoustic signals. Sensors 2019, 19, 269. [CrossRef]

[PubMed]
12. Xu, Y.; Zhang, K.; Ma, C.; Cui, L.; Tian, W. Adaptive Kurtogram and its applications in rolling bearing fault diagnosis. Mech. Syst.

Signal Process. 2019, 130, 87–107. [CrossRef]
13. Liu, Z.; Yang, S.; Liu, Y.; Lin, J.; Gu, X. Adaptive correlated Kurtogram and its applications in wheelset-bearing system fault

diagnosis. Mech. Syst. Signal Process. 2021, 154, 107511. [CrossRef]
14. Zhang, K.; Xu, Y.; Liao, Z.; Song, L.; Chen, P. A novel Fast Entrogram and its applications in rolling bearing fault diagnosis. Mech.

Syst. Signal Process. 2021, 154, 107582. [CrossRef]
15. Cheng, J.; Yang, Y.; Li, X.; Cheng, J. Adaptive periodic mode decomposition and its application in rolling bearing fault diagnosis.

Mech. Syst. Signal Process. 2021, 161, 107943. [CrossRef]
16. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? Adv. Neural Inf. Process. Syst.

2014, 27, 3320–3328.
17. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
18. Chen, H.; Liu, Z.; Alippi, C.; Huang, B.; Liu, D. Explainable intelligent fault diagnosis for nonlinear dynamic systems: From 522

unsupervised to supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef]
19. Fu, W.; Tan, J.; Xu, Y.; Wang, K.; Chen, T. Fault diagnosis for rolling bearings based on fine-sorted dispersion entropy and SVM

optimized with mutation SCA-PSO. Entropy 2019, 21, 404. [CrossRef]

https://doi.org/10.1016/j.ymssp.2013.07.006
https://doi.org/10.1016/j.ymssp.2010.07.017
https://doi.org/10.1177/1475921719887496
https://doi.org/10.1016/j.ymssp.2017.11.024
https://doi.org/10.1016/j.ymssp.2012.08.019
https://doi.org/10.1016/0301-679X(84)90076-8
https://doi.org/10.1016/j.aei.2017.02.005
https://doi.org/10.1016/j.measurement.2018.09.013
https://doi.org/10.1016/j.ifacol.2018.09.581
https://doi.org/10.3390/app8122656
https://doi.org/10.3390/s19020269
https://www.ncbi.nlm.nih.gov/pubmed/30641950
https://doi.org/10.1016/j.ymssp.2019.05.003
https://doi.org/10.1016/j.ymssp.2020.107511
https://doi.org/10.1016/j.ymssp.2020.107582
https://doi.org/10.1016/j.ymssp.2021.107943
https://doi.org/10.1145/3065386
https://doi.org/10.1109/TNNLS.2022.3201511
https://doi.org/10.3390/e21040404

Processes 2023, 11, 1527 17 of 17

20. Wei, Y.; Li, Y.; Xu, M.; Huang, W. A review of early fault diagnosis approaches and their applications in rotating machinery.
Entropy 2019, 21, 409. [CrossRef]

21. Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [CrossRef]
22. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
23. Chen, Z.; Li, C.; Sanchez, R.V. Gearbox fault identification and classification with convolutional neural networks. Shock. Vib. 2015,

2015, 390134. [CrossRef]
24. Zhao, J.; Yang, S.; Li, Q.; Liu, Y.; Gu, X.; Liu, W. A new bearing fault diagnosis method based on signal-to-image mapping and

convolutional neural network. Measurement 2021, 176, 109088. [CrossRef]
25. Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault

diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]
26. Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional

neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345. [CrossRef]
27. Springenberg, J.T. Unsupervised and semi-supervised learning with categorical generative adversarial networks. arXiv 2015,

arXiv:1511.06390.
28. Gao, Y.; Liu, X.; Huang, H.; Xiang, J. A hybrid of FEM simulations and generative adversarial networks to classify faults in

rotor-bearing systems. ISA Trans. 2021, 108, 356–366. [CrossRef]
29. Liu, H.; Zhou, J.; Xu, Y.; Zheng, Y.; Peng, X.; Jiang, W. Unsupervised fault diagnosis of rolling bearings using a deep neural

network based on generative adversarial networks. Neurocomputing 2018, 315, 412–424. [CrossRef]
30. Wang, R.; Jiang, H.; Li, X.; Liu, S. A reinforcement neural architecture search method for rolling bearing fault diagnosis.

Measurement 2020, 154, 107417. [CrossRef]
31. Liu, H.; Zhou, J.; Zheng, Y.; Jiang, W.; Zhang, Y. Fault diagnosis of rolling bearings with recurrent neural network-based

autoencoders. ISA Trans. 2018, 77, 167–178. [CrossRef]
32. Guo, L.; Li, N.; Jia, F.; Lei, Y.; Lin, J. A recurrent neural network based health indicator for remaining useful life prediction of

bearings. Neurocomputing 2017, 240, 98–109. [CrossRef]
33. Tamilselvan, P.; Wang, P. Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 2013,

115, 124–135. [CrossRef]
34. Shao, H.; Jiang, H.; Zhang, X.; Niu, M. Rolling bearing fault diagnosis using an optimization deep belief network. Meas. Sci.

Technol. 2015, 26, 115002. [CrossRef]
35. Shao, H.; Jiang, H.; Zhang, H.; Duan, W.; Liang, T.; Wu, S. Rolling bearing fault feature learning using improved convolutional

deep belief network with compressed sensing. Mech. Syst. Signal Process. 2018, 100, 743–765. [CrossRef]
36. Lu, C.; Wang, Z.Y.; Qin, W.L.; Ma, J. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based

health state identification. Signal Process. 2017, 130, 377–388. [CrossRef]
37. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
38. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
39. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
40. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.
41. Parmar, A.; Gulia, S.; Bajaj, S.; Gambhir, V.; Sharma, R.; Reddy, M. Signal processing of Raman signatures and realtime

identification of hazardous molecules using continuous wavelet transformation (CWT). In Proceedings of the 2015 International
Conference on Signal Processing and Communication Engineering Systems, Guntur, India, 2–3 January 2015; pp. 323–325.

42. Nigrin, A. Neural Networks for Pattern Recognition; MIT Press: Cambridge, MA, USA, 1993.
43. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556 527.
44. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef]
45. Goodfellow, I.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout networks. In Proceedings of the International

Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1319–1327.
46. Le, Y.; Bottou, L.; Orr, G. Efficient BackProp. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 1998.
47. Jajodia, T.; Garg, P. Image classification–cat and dog images. Image 2019, 6, 570–572.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/e21040409
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1016/j.neunet.2014.09.003
https://www.ncbi.nlm.nih.gov/pubmed/25462637
https://doi.org/10.1155/2015/390134
https://doi.org/10.1016/j.measurement.2021.109088
https://doi.org/10.1016/j.ymssp.2017.06.022
https://doi.org/10.1016/j.jsv.2016.05.027
https://doi.org/10.1016/j.isatra.2020.08.012
https://doi.org/10.1016/j.neucom.2018.07.034
https://doi.org/10.1016/j.measurement.2019.107417
https://doi.org/10.1016/j.isatra.2018.04.005
https://doi.org/10.1016/j.neucom.2017.02.045
https://doi.org/10.1016/j.ress.2013.02.022
https://doi.org/10.1088/0957-0233/26/11/115002
https://doi.org/10.1016/j.ymssp.2017.08.002
https://doi.org/10.1016/j.sigpro.2016.07.028
https://doi.org/10.1109/72.279181

	Introduction
	Materials and Methods
	Rolling Bearing Fault Signal Transformation
	Introduce ResNet
	ResNet Basics
	Squeeze-and-Excitation Networks Basics
	SENet in ResNet

	Experimental Procedure
	Model Performance Metrics

	Results of the Experiment
	Signal-to-Image Results
	The Results of the Fault Diagnosis
	Results of ResNet Family Fault Diagnosis
	Results of the SE-ResNet Family Fault Diagnosis

	Discussion
	ResNet Models
	SE-ResNet Models
	Performance Comparison of SE-ResNet152 with Three Other DL Models

	Conclusions
	References

